71 research outputs found

    The Kinematic Algebras from the Scattering Equations

    Get PDF
    We study kinematic algebras associated to the recently proposed scattering equations, which arise in the description of the scattering of massless particles. In particular, we describe the role that these algebras play in the BCJ duality between colour and kinematics in gauge theory, and its relation to gravity. We find that the scattering equations are a consistency condition for a self-dual-type vertex which is associated to each solution of those equations. We also identify an extension of the anti-self-dual vertex, such that the two vertices are not conjugate in general. Both vertices correspond to the structure constants of Lie algebras. We give a prescription for the use of the generators of these Lie algebras in trivalent graphs that leads to a natural set of BCJ numerators. In particular, we write BCJ numerators for each contribution to the amplitude associated to a solution of the scattering equations. This leads to a decomposition of the determinant of a certain kinematic matrix, which appears naturally in the amplitudes, in terms of trivalent graphs. We also present the kinematic analogues of colour traces, according to these algebras, and the associated decomposition of that determinant.Comment: 23 pages, 4 figure

    BCFW Recursion Relations and String Theory

    Get PDF
    We demonstrate that all tree-level string theory amplitudes can be computed using the BCFW recursion relations. Our proof utilizes the pomeron vertex operator introduced by Brower, Polchinski, Strassler, and Tan. Surprisingly, we find that in a particular large complex momentum limit, the asymptotic expansion of massless string amplitudes is identical in form to that of the corresponding field theory amplitudes. This observation makes manifest the fact that field-theoretic Yang-Mills and graviton amplitudes obey KLT-like relations. Moreover, we conjecture that in this large momentum limit certain string theory and field theory amplitudes are identical, and provide evidence for this conjecture. Additionally, we find a new recursion relation which relates tachyon amplitudes to lower-point tachyon amplitudes.Comment: 36 pages, JHEP3; reference and note added, improved discussion in section

    The Lee-Wick Standard Model

    Get PDF
    We construct a modification of the standard model which stabilizes the Higgs mass against quadratically divergent radiative corrections, using ideas originally discussed by Lee and Wick in the context of a finite theory of quantum electrodynamics. The Lagrangian includes new higher derivative operators. We show that the higher derivative terms can be eliminated by introducing a set of auxiliary fields; this allows for convenient computation and makes the physical interpretation more transparent. Although the theory is unitary, it does not satisfy the usual analyticity conditions.Comment: 20 pages, 4 figures. Improved discussion and reference added. Contour prescription clarifie

    Black holes and the double copy

    Get PDF
    Recently, a perturbative duality between gauge and gravity theories (the double copy) has been discovered, that is believed to hold to all loop orders. In this paper, we examine the relationship between classical solutions of non-Abelian gauge theory and gravity. We propose a general class of gauge theory solutions that double copy to gravity, namely those involving stationary Kerr-Schild metrics. The Schwarzschild and Kerr black holes (plus their higher-dimensional equivalents) emerge as special cases. We also discuss plane wave solutions. Furthermore, a recently examined double copy between the self-dual sectors of Yang-Mills theory and gravity can be reinterpreted using a momentum-space generalisation of the Kerr-Schild framework.Comment: 22 pages; typos corrected and references adde

    Constraints on New Physics from Baryogenesis and Large Hadron Collider Data

    Full text link
    We demonstrate the power of constraining theories of new physics by insisting that they lead to electroweak baryogenesis, while agreeing with current data from the Large Hadron Collider. The general approach is illustrated with a singlet scalar extension of the Standard Model. Stringent bounds can already be obtained, which reduce the viable parameter space to a small island.Comment: 4 pages, 2 figures. References added, figures updated. Version to appear in PR

    Mixed Action Effective Field Theory: an Addendum

    Full text link
    We correct a mistake in the literature regarding the additive lattice spacing corrections to the mixed valence-sea meson mass and discuss the consequences for mixed action extrapolation formulae.Comment: 4 pages, version published in PR

    Colour-Kinematics Duality for One-Loop Rational Amplitudes

    Get PDF
    Colour-kinematics duality is the conjecture of a group theory-like structure for the kinematic dependence of scattering amplitudes in gauge theory and gravity. This structure has been verified at tree level in various ways, but similar progress has been lacking at loop level, where the power of the duality would be most significant. Here we explore colour-kinematics duality at one loop using the self-dual sector as a starting point. The duality is shown to exist in pure Yang-Mills theory for two infinite classes of amplitudes: amplitudes with any number of particles either all of the same helicity or with one particle helicity opposite the rest. We provide a simple Lagrangian-based argument in favour of the double copy relation between gauge theory and gravity amplitudes in these classes, and provide some explicit examples. We further discuss aspects of the duality which persist after integration, leading to relations among partial amplitudes. Finally, we describe form factors in the self-dual theory at tree level which also satisfy the duality.Comment: 36 pages, 5 figures; v2: published versio

    The Radial Action from Probe Amplitudes to All Orders

    Get PDF
    We extract the relativistic classical radial action from scattering amplitudes, to all orders in perturbation theory, in the probe limit. Our sources include point charges and monopoles, as well as the Schwarzschild and pure-NUT gravitational backgrounds. A characteristic relativistic effect, that scattering trajectories may wind around these sources any number of times, can be recovered when all-order amplitudes are available. We show that the amplitude for scattering a probe off a pure NUT is given by the solution of a transcendental equation involving continued fractions, and explain how to solve this equation to any desired loop order
    corecore